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References and Notes VI. Conclusions 
The diffusive nature of the orientation relaxation in 

flexible polymers introduces in the orientation autocor- 
relation function features that can be accounted for only 
by specific models. Synchrotron-excited fluorescence po- 
larized decay provides a basis for an extensive discussion 
of available theories. In spite of good curve fitting capa- 
bility, the empirical Williams-Watts expression should be 
discarded, because of too large variations of best-fit pa- 
rameters upon changes in the fitting window. Valeur, 
Jarry, Geny, and Monnerie’s model fits the data only in 
the long-time region and should be discarded for a precise 
short-time analysis. 

The theoretical weakness of the VJGM model demon- 
strated here experimentally for the first time was overcome 
later by Jones and Stockmayer and by Bendler and Yaris. 
Indeed, our results clearly demonstrate the practical im- 
portance of these improvements: both models account 
satisfyingly for the orientational motions of polystyrene 
in solutions of various viscosities and using several fitting 
windows. But both models are also difficult to interpret 
because of arbitrary truncation procedures. On the other 
hand, the model recently proposed by Hall and Helfand, 
which relies on clear molecular assumptions, does not fit 
as well to the experiments. Using some empirical con- 
siderations and qualitative theoretical arguments, one can 
propose an expression for the orientational autocorrelation 
function closely related to Hall and Helfand’s model, but 
more adapted to fluorescence decay experiments. In the 
case of polystyrene, this expression fits to the data as well 
as the BY and J S  models, while keeping the attractive 
molecular basis of the H H  model. Nevertheless, further 
theoretical work seems necessary to understand the exact 
physical meaning of this modification imposed by exper- 
iment. 
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ABSTRACT: Zimm’s single-contact approximation is used to  derive an expression for the concentration 
dependence of the first cumulant for dilute polymer solutions. The  concentration dependence coefficient 
is found to  decrease as a function of momentum transfer. This means that  the concentration effect on the 
first cumulant is less important for smaller portions of polymer chains. 

Introduction 
A good deai of effort has been generated to study the 

concentration dependence of static as well as dynamic 
quantities characterizing polymer molecules in solution. 

Theoretical investigations tend to concentrate on the 
calculation of the concentration correction (in dilute so- 
lutions, for example) for directly measurable quantities, 
namely, the static structure factor or the dynamic structure 
factor and quantities that are related to them such as the 
first cumulant considered here. 

In the case of the static structure factor S(q),  Zimm’s’ 
single-contact approximation is probably the first ap- 
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For simplicity, q is often taken along the z direction so that 

To make the concentration dependence explicit, we 
separate the a sums over single-chain (a’ = a)  and inter- 
ference (a’ # a )  parts: 

q T * q  = q2T33. 
proximation that has been used to derive a simple ex- 
pression for the concentration correction coefficient. This 
coefficient is proportional to the second virial coefficient 
and can be extracted experimentally either by curve fitting 
or by the Zimm plot if low enough q data are available. 

The first cumulant O ( q )  can be obtained from dynamic 
light or neutron scattering measurements. Some models 
present a concentration dependence of the short-time 
diffusion coefficient D = lim,+ O ( q ) / q 2  to linear order in 
concentration, which can be used to interpret light scat- 
tering data in the Guinier range. In order to interpret 
dynamic light or neutron scattering experiments in the 
intermediate q range, however, one needs an expression 
for the concentration dependence of O ( q )  without re- 
striction to the small-q range. In this paper, we use Zimm’s 
single-contact approximation to determine the concen- 
tration dependence of Q(q)  in dilute solutions for all values 
of q. 

First Cumulant and Generalized Mobility 
The single-contact approximation was introduced by 

Zimm to model excluded volume interactions between 
chains. This approximation was applied to the static 
structure factor 

1 N n  

N n  aa’jj’ 
S(q,C) = y C C ( e x p ( i q ) . ( R , , l  + Saja‘Y)) ( 1 )  

to obtain its concentration dependence for dilute polymer 
solutions as 

(2) 

where k ,  = xn2S,(q) and Ss(q) is the normalized single- 
chain static structure factor. In these equations N a n d  n 
are the number of polymers in the solution and the number 
of monomers in each polymer, respectively. R, is the 
position of the center of mass of the a t h  polymer, S,j is 
the position of the j th  monomer about this center of mass, 
and SajatY = Saj - Equation 2 is sometimes also 
presented in the form 

(3) 

used in the conventional Zimm plot. 
In this paper, we also use the single-contact approxi- 

mation to obtain the concentration dependence of the first 
cumulant R ( q ) .  The latter can be written in terms of the 
q-dependent mobility ~ ( q )  as2 

S(4,C) = S,(4)[1 - k,(q)Cl 

S-Yq,C) = S;Yq) ( l  + k, (q)C)  

(4) 

Since the concentration dependence of S(q) is already 
known, we concentrate, in this paper, on the concentration 
dependence of ~ ( q ) ,  which is defined explicitly as 

where D is the diffusion tensor3 
kBT = 

@RAB) = -(I~AB + E(1 - ~AB)?(RAB)) (6) 

and ?(RAB) is the Oseen tensor for hydrodynamic inter- 
action 

E 

As we have indicated, the first and second ensemble av- 
erages are over the one-chain \kl and two-chain \k2 dis- 
tribution functions, respectively. We should note that \kl 
is also concentration dependent due to the deformation 
of the chain in the presence of others. The estimate of this 
concentration dependence shows that, in general, single- 
chain properties are very insensitive to concentration ef- 
f e c t ~ . ~  Actually, within the framework of the single-contact 
approximation, the concentration dependence of single- 
chain properties disappears completely. \k2 is also to be 
calculated in the zero-concentration limit because the term 
involving the second ensemble average in p(q,C) is already 
proportional to concentration. 

Introducing the Fourier transform f’33(K) of the Oseen 
tensor and the radial distribution for a pair of molecules 
g ( R ) ,  the first term in eq 8 can be written as 

1 1 
d q )  = - nt + -Jd3K (2*)3 F33(K - q)( S,(K) - i) (9) 

which is the generalized mobility in the infinite dilution 
limit. 

To evaluate the second term in eq 8 ,  one needs the 
explicit form of the two-chain distribution function \k2. In 
the single-contact approximation, \k2 is given by 

9 2  (Rl, s 1 ,R2 9s 2) = 
n 

k, l  
*i(Ri,Si)\ki(&,sJ(1 - xE:S(R12 + Sik21)) (10) 

where x is the excluded volume parameter for contacts 
between two monomers of two separate chains and is given 
by the binary cluster integra1.j Using this expansion and 
performing R12 integration, one obtains 

(11) 
The term l / n  has been subtracted to keep contributions 
only from k # i and 1 # j in the summation and thus not 
to include hydrodynamic interaction between two mono- 
mers located at  the same position as a result of the sin- 
gle-contact approximation. Expanding p(q,C) as 

(12 )  CL(Q,C) = / ~ ( 4 ) ( 1  - k, (q)C)  

one can identify the concentration coefficient k , ( q )  as 

where we have introduced the following q-dependent in- 
tegrals: 

The angular integrations are performed analytically in 
Appendix I and the K integrations are done numerically 
by assuming a form for S,(K). We would like to mention, 
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experimentally. In the case of 8 solvents, where A2 = 0, 
the single-contact approximation would imply x = 0 and 
hence k n ( q )  = 0 for all values of q. However, this con- 
clusion cannot be true, a t  least in the small-q limit, where 
Q(q)/q2 approaches the short-time diffusion coefficient 

D ( c )  = D(1 + kDC) (18) 

with k,(q - 0) = k D  and 

'O* 

T s J  0.0 0 1 2 3 4 

q %  
Figure 1. Variation of the normalized concentration coefficient 
kn(q)/Xn2 as a function of the normalized momentum transfer 
qR, using (1) a Debye function and (2) the fully swollen Gaussian 
chain model with v = 0.6. 

however, that the theoretical formulas containing S,(K) 
are general and not restricted to a particular shape for the 
static structure factor. In the present paper, we use a 
Debye function for S,(K) known to be valid for 8 solvents. 
The calculations reported by Ohta et aL6 show that the 
Debye function with swollen R, is a fairly good approxi- 
mation up to large values of its argument x = KR, for good 
solvents as well. However, one should remember that the 
Debye function goes to l / x 2  for very large x ,  whereas S,(x) 
goes to l /xll",  where v is the excluded volume exponent 
taken to be v = 0.6 for good solvents. Other models such 
as the completely swollen chain model (Peterlin' and 
Akcasu and Benmouna8 among others) or those based on 
the blob hypothesis can be used if S,(K) is needed as a 
function of temperature. 

The concentration dependence of the first cumulant in 
dilute polymer solutions follows from eq 4 as 

(15) Q ( q , C )  = Q2(q)(l + k, (q)C)  

kn(q) k , (q)  - k, (q)  

where 

or 

The excluded volume parameter x can be related to the 
second virial coeeficient A2, to the interpenetration func- 
tion I), or to the dimensionless radius of influence X = 
S/RH (normalized with respect to the hydrodynamic ra- 
dius): 

where NAv is Avogadro's number, M ,  is the molecular 
weight, and R, is the radius of gyration. 

Results and Conclusions 
The plot of k n ( q ) / X n 2  in Figure 1 shows that as q in- 

creases, the concentration dependence decreases and ul- 
timately vanishes for large enough q values. This q de- 
pendence of k n ( q ) / x n 2  is expected because smaller portions 
of the chain are probed by the scattering radiation as q 
increases. Since k , ( q ) / X n 2  is positive, the plateaug of 
Q(q)/q3 in the intermediate q range is shifted upward for 
good solvents with increasing concentration but not uni- 
formly. This nonuniform variation remains to be seen 

where u = KRH. It is known both theoretically and ex- 
perimentally that the diffusion coefficient decreases with 
increasing concentration, i.e., kD < 0, under the 8 condi- 
tion. This discrepancy is due to the inadequacy of the 
single-contact approximation near the 8 temperature, 
where the interpenetration of chains is important. 

When the concentration dependence in eq 18 is mea- 
sured in terms of hydrodynamic volume fraction C, = 
4 /3TR~3C,  kD becomes 

where X was def ied before. This expression is yet another 
estimate for the concentration coefficient of the collective 
diffusion coefficient. In order to compare eq 20 with the 
previous estimates, we calculated kDv as kDv = 3.77x3 using 
the Debye form of S,(K) (see eq 16 and Appendix 11) and 
as kDv = 4.16X3 using the fully swollen Gaussian chain 
model with v = 0.6. The latter estimate is, of course, 
pertinent only to the good solvent limit. These results 
should be compared with kDv = 3.2X3 - 1 due to Yama- 
kawa5 and kDv = X2(8X - 6) by Akcasu and Benmouna.8 
We observe that when X = 1, which is a typical value in 
good solvents, one obtains kDv = 3.77, 2.2, and 2, respec- 
tively. Since experimental resultslOJ1 seem to suggest 
smaller values than kD' = 2 in the vicinity of x = 1, we 
conclude that eq 20 based on the single-contact approxi- 
mation overestimates the concentration correction to the 
small-q limit of Q(q). One would expect that  the same 
trend be true for all values of q. 

Acknowledgment is made to the donors of the Petro- 
leum Research Fund, administered by the American 
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Appendix I 
In this appendix, we perform the angular integrations 

involved in I l , 2 ( q ) .  Recall the Fourier transform of the 
Oseen tensor: 

1 1 TS3(K - q) = - [l - cos2 a] (21) 
tl IC2 + q2 - 2Kq COS 0 

where 0 is the angle between K and q and a is the angle 
between K - q and q. The azimuthal integration in I1 ,Jq)  
is trivially done: 

- COS' CY] ( S,(K) - - :Y,' (22) 

We use the angular relation 

[l - cos2 01 (23) 
K2 

K2 + q2 - 2Kq COS 0 
1 - cos2 a = 

and perform the 8 integration straightforwardly to obtain 
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The small-q limit of this expression can be checked by 
expanding the logarithm in the q /  K smallness parameter 

Z1,2(q - 0) = "smdK (S,(K) - ')"' n (25) 
37 0 

These integrals are evaluated analytically in the next ap- 
pendix for Gaussian chains. 

Appendix I1 
We assume a Gaussian chain model for S,(K) 

where 1 is the statistical length, introduce a dimensionless 
variable x = Kl(n/6)'i2 = KR,, and use the general identity 
(valid for j # i) 

n n 

i j  1 
CA(li  - j l )  = 2C(n - i )A( i )  (27) 

to manipulate Zl(q - 0) to the form 

16a 
Zl(q -+ 0) = -J dx Ce-x2i/n(n - i) 

37n2R, 1 
(28) 

We approximate the summation by an integration to find 
32a3i2 

Z1(q - 0) = - 
9 7 4  

and similarly for Z2(q - 0) 

( '&-xzlk-4/n - - = ~ (8(2lI2) - 9 )  (30) n 768a312 94517R, 
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ABSTRACT: A formal multiple-scattering solution is provided for the polymer chain dynamics, the fluid 
velocity field, etc., for a system of polymers a t  nonzero concentration with excluded volume. The analysis 
proceeds by the introduction of operators describing the dynamical contributions of excluded volume interactions 
to  the polymer force constants. We evaluate the average of the fluid velocity field over the conformations 
of all polymers because this average velocity field may be utilized to  compute the concentration-dependent 
dynamical viscosity and because related quantities can be used to evaluate the concentration-dependent polymer 
friction coefficients. The  final results are in a form that bears a one-to-one correspondence with terms in 
the multiple-scattering expansion for Gaussian chains, thereby providing a general prescription for converting 
these former multiple-scattering expressions into ones incorporating excluded volume exactly. A set of 
preaveraging-type approximations is introduced. The simplest is shown to yield a dynamic intrinsic viscosity 
of the Rouse-Zimm form, but with excluded volume dependent hydrodynamic and force constant matrices. 
A microscopic prescription is provided for calculating the latter, while the former has been evaluated elsewhere 
by renormalization group methods. The same analysis, applied here to derive the excluded volume dependent 
viscosity, can readily be utilized to consider concentration-dependent quantities using either the concentration 
expansion or effective medium methods. 

I. Introduction 
The theory of the concentration dependence of the hy- 

drodynamics of solutions of polymer chains has been 
presented in a multiple-scattering formalism based on 
either the pure solvent or an effective medium reference.'* 
The former is useful for the development of a concentra- 
tion expansion of the viscoelastic and frictional properties8 

*Address correspondence to the author at The University of 
Chicago. 
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of polymer solutions, and applications to a number of these 
properties have been g i ~ e n . ~ , ~  Of particular note is the 
theory of the leading concentration dependence of the 
relaxation times of the individual polymer modes,5 which 
is in excellent agreement with recent experiments by Lodge 
and Schrag except for some slight difference in the overall 
numerical factor and discrepancies a t  higher frequencie~.~ 
Improved calculations of these features are currently in 
progress. The effective medium repre~entation,'-~ on the 
other hand, is useful in describing the full concentration 
dependence, displaying the crossover from Zimm-like 
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